3.208 \(\int \frac{(a+b x^2)^{5/2}}{(c+d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=346 \[ -\frac{2 b \sqrt{c} \sqrt{a+b x^2} (2 b c-3 a d) \text{EllipticF}\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right ),1-\frac{b c}{a d}\right )}{3 d^{5/2} \sqrt{c+d x^2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac{x \sqrt{a+b x^2} \left (3 a^2 d^2-13 a b c d+8 b^2 c^2\right )}{3 c d^2 \sqrt{c+d x^2}}+\frac{\sqrt{a+b x^2} \left (3 a^2 d^2-13 a b c d+8 b^2 c^2\right ) E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 \sqrt{c} d^{5/2} \sqrt{c+d x^2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac{b x \sqrt{a+b x^2} \sqrt{c+d x^2} (4 b c-3 a d)}{3 c d^2}-\frac{x \left (a+b x^2\right )^{3/2} (b c-a d)}{c d \sqrt{c+d x^2}} \]

[Out]

-((8*b^2*c^2 - 13*a*b*c*d + 3*a^2*d^2)*x*Sqrt[a + b*x^2])/(3*c*d^2*Sqrt[c + d*x^2]) - ((b*c - a*d)*x*(a + b*x^
2)^(3/2))/(c*d*Sqrt[c + d*x^2]) + (b*(4*b*c - 3*a*d)*x*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(3*c*d^2) + ((8*b^2*c^
2 - 13*a*b*c*d + 3*a^2*d^2)*Sqrt[a + b*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*Sqrt[c
]*d^(5/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2]) - (2*b*Sqrt[c]*(2*b*c - 3*a*d)*Sqrt[a + b*x^2
]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*d^(5/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sq
rt[c + d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.266402, antiderivative size = 346, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {413, 528, 531, 418, 492, 411} \[ -\frac{x \sqrt{a+b x^2} \left (3 a^2 d^2-13 a b c d+8 b^2 c^2\right )}{3 c d^2 \sqrt{c+d x^2}}+\frac{\sqrt{a+b x^2} \left (3 a^2 d^2-13 a b c d+8 b^2 c^2\right ) E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 \sqrt{c} d^{5/2} \sqrt{c+d x^2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac{b x \sqrt{a+b x^2} \sqrt{c+d x^2} (4 b c-3 a d)}{3 c d^2}-\frac{2 b \sqrt{c} \sqrt{a+b x^2} (2 b c-3 a d) F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 d^{5/2} \sqrt{c+d x^2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac{x \left (a+b x^2\right )^{3/2} (b c-a d)}{c d \sqrt{c+d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^(5/2)/(c + d*x^2)^(3/2),x]

[Out]

-((8*b^2*c^2 - 13*a*b*c*d + 3*a^2*d^2)*x*Sqrt[a + b*x^2])/(3*c*d^2*Sqrt[c + d*x^2]) - ((b*c - a*d)*x*(a + b*x^
2)^(3/2))/(c*d*Sqrt[c + d*x^2]) + (b*(4*b*c - 3*a*d)*x*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(3*c*d^2) + ((8*b^2*c^
2 - 13*a*b*c*d + 3*a^2*d^2)*Sqrt[a + b*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*Sqrt[c
]*d^(5/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2]) - (2*b*Sqrt[c]*(2*b*c - 3*a*d)*Sqrt[a + b*x^2
]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(3*d^(5/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sq
rt[c + d*x^2])

Rule 413

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((a*d - c*b)*x*(a + b*x^n)^
(p + 1)*(c + d*x^n)^(q - 1))/(a*b*n*(p + 1)), x] - Dist[1/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)
^(q - 2)*Simp[c*(a*d - c*b*(n*(p + 1) + 1)) + d*(a*d*(n*(q - 1) + 1) - b*c*(n*(p + q) + 1))*x^n, x], x], x] /;
 FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, n, p, q
, x]

Rule 528

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
(f*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*(n*(p + q + 1) + 1)), x] + Dist[1/(b*(n*(p + q + 1) + 1)), Int[(a +
 b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f + b*e*n*(p + q + 1)) + (d*(b*e - a*f) + f*n*q*(b*c - a*d) + b*
d*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && GtQ[q, 0] && NeQ[n*(p + q + 1) + 1
, 0]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{\left (a+b x^2\right )^{5/2}}{\left (c+d x^2\right )^{3/2}} \, dx &=-\frac{(b c-a d) x \left (a+b x^2\right )^{3/2}}{c d \sqrt{c+d x^2}}+\frac{\int \frac{\sqrt{a+b x^2} \left (a b c+b (4 b c-3 a d) x^2\right )}{\sqrt{c+d x^2}} \, dx}{c d}\\ &=-\frac{(b c-a d) x \left (a+b x^2\right )^{3/2}}{c d \sqrt{c+d x^2}}+\frac{b (4 b c-3 a d) x \sqrt{a+b x^2} \sqrt{c+d x^2}}{3 c d^2}+\frac{\int \frac{-2 a b c (2 b c-3 a d)-b \left (8 b^2 c^2-13 a b c d+3 a^2 d^2\right ) x^2}{\sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx}{3 c d^2}\\ &=-\frac{(b c-a d) x \left (a+b x^2\right )^{3/2}}{c d \sqrt{c+d x^2}}+\frac{b (4 b c-3 a d) x \sqrt{a+b x^2} \sqrt{c+d x^2}}{3 c d^2}-\frac{(2 a b (2 b c-3 a d)) \int \frac{1}{\sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx}{3 d^2}-\frac{\left (b \left (8 b^2 c^2-13 a b c d+3 a^2 d^2\right )\right ) \int \frac{x^2}{\sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx}{3 c d^2}\\ &=-\frac{\left (8 b^2 c^2-13 a b c d+3 a^2 d^2\right ) x \sqrt{a+b x^2}}{3 c d^2 \sqrt{c+d x^2}}-\frac{(b c-a d) x \left (a+b x^2\right )^{3/2}}{c d \sqrt{c+d x^2}}+\frac{b (4 b c-3 a d) x \sqrt{a+b x^2} \sqrt{c+d x^2}}{3 c d^2}-\frac{2 b \sqrt{c} (2 b c-3 a d) \sqrt{a+b x^2} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 d^{5/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt{c+d x^2}}+\frac{\left (8 b^2 c^2-13 a b c d+3 a^2 d^2\right ) \int \frac{\sqrt{a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{3 d^2}\\ &=-\frac{\left (8 b^2 c^2-13 a b c d+3 a^2 d^2\right ) x \sqrt{a+b x^2}}{3 c d^2 \sqrt{c+d x^2}}-\frac{(b c-a d) x \left (a+b x^2\right )^{3/2}}{c d \sqrt{c+d x^2}}+\frac{b (4 b c-3 a d) x \sqrt{a+b x^2} \sqrt{c+d x^2}}{3 c d^2}+\frac{\left (8 b^2 c^2-13 a b c d+3 a^2 d^2\right ) \sqrt{a+b x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 \sqrt{c} d^{5/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt{c+d x^2}}-\frac{2 b \sqrt{c} (2 b c-3 a d) \sqrt{a+b x^2} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{3 d^{5/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt{c+d x^2}}\\ \end{align*}

Mathematica [C]  time = 0.454262, size = 256, normalized size = 0.74 \[ \frac{-i b c \sqrt{\frac{b x^2}{a}+1} \sqrt{\frac{d x^2}{c}+1} \left (9 a^2 d^2-17 a b c d+8 b^2 c^2\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (x \sqrt{\frac{b}{a}}\right ),\frac{a d}{b c}\right )+i b c \sqrt{\frac{b x^2}{a}+1} \sqrt{\frac{d x^2}{c}+1} \left (3 a^2 d^2-13 a b c d+8 b^2 c^2\right ) E\left (i \sinh ^{-1}\left (\sqrt{\frac{b}{a}} x\right )|\frac{a d}{b c}\right )+d x \sqrt{\frac{b}{a}} \left (a+b x^2\right ) \left (3 a^2 d^2-6 a b c d+b^2 c \left (4 c+d x^2\right )\right )}{3 c d^3 \sqrt{\frac{b}{a}} \sqrt{a+b x^2} \sqrt{c+d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^(5/2)/(c + d*x^2)^(3/2),x]

[Out]

(Sqrt[b/a]*d*x*(a + b*x^2)*(-6*a*b*c*d + 3*a^2*d^2 + b^2*c*(4*c + d*x^2)) + I*b*c*(8*b^2*c^2 - 13*a*b*c*d + 3*
a^2*d^2)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] - I*b*c*(8*b^2
*c^2 - 17*a*b*c*d + 9*a^2*d^2)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)
/(b*c)])/(3*Sqrt[b/a]*c*d^3*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.023, size = 539, normalized size = 1.6 \begin{align*}{\frac{1}{ \left ( 3\,bd{x}^{4}+3\,ad{x}^{2}+3\,bc{x}^{2}+3\,ac \right ){d}^{3}c}\sqrt{b{x}^{2}+a}\sqrt{d{x}^{2}+c} \left ( \sqrt{-{\frac{b}{a}}}{x}^{5}{b}^{3}c{d}^{2}+3\,\sqrt{-{\frac{b}{a}}}{x}^{3}{a}^{2}b{d}^{3}-5\,\sqrt{-{\frac{b}{a}}}{x}^{3}a{b}^{2}c{d}^{2}+4\,\sqrt{-{\frac{b}{a}}}{x}^{3}{b}^{3}{c}^{2}d+9\,\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticF} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ){a}^{2}bc{d}^{2}-17\,\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticF} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ) a{b}^{2}{c}^{2}d+8\,\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticF} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ){b}^{3}{c}^{3}-3\,\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticE} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ){a}^{2}bc{d}^{2}+13\,\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticE} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ) a{b}^{2}{c}^{2}d-8\,\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticE} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ){b}^{3}{c}^{3}+3\,x{a}^{3}{d}^{3}\sqrt{-{\frac{b}{a}}}-6\,\sqrt{-{\frac{b}{a}}}x{a}^{2}bc{d}^{2}+4\,\sqrt{-{\frac{b}{a}}}xa{b}^{2}{c}^{2}d \right ){\frac{1}{\sqrt{-{\frac{b}{a}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(5/2)/(d*x^2+c)^(3/2),x)

[Out]

1/3*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)*((-b/a)^(1/2)*x^5*b^3*c*d^2+3*(-b/a)^(1/2)*x^3*a^2*b*d^3-5*(-b/a)^(1/2)*x^
3*a*b^2*c*d^2+4*(-b/a)^(1/2)*x^3*b^3*c^2*d+9*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),
(a*d/b/c)^(1/2))*a^2*b*c*d^2-17*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/
2))*a*b^2*c^2*d+8*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^3*c^3-3*
((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a^2*b*c*d^2+13*((b*x^2+a)/a)
^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*b^2*c^2*d-8*((b*x^2+a)/a)^(1/2)*((d*x^2
+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b^3*c^3+3*x*a^3*d^3*(-b/a)^(1/2)-6*(-b/a)^(1/2)*x*a^2*b
*c*d^2+4*(-b/a)^(1/2)*x*a*b^2*c^2*d)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)/d^3/c/(-b/a)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}^{\frac{5}{2}}}{{\left (d x^{2} + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(5/2)/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^(5/2)/(d*x^2 + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b^{2} x^{4} + 2 \, a b x^{2} + a^{2}\right )} \sqrt{b x^{2} + a} \sqrt{d x^{2} + c}}{d^{2} x^{4} + 2 \, c d x^{2} + c^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(5/2)/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

integral((b^2*x^4 + 2*a*b*x^2 + a^2)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)/(d^2*x^4 + 2*c*d*x^2 + c^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x^{2}\right )^{\frac{5}{2}}}{\left (c + d x^{2}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(5/2)/(d*x**2+c)**(3/2),x)

[Out]

Integral((a + b*x**2)**(5/2)/(c + d*x**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}^{\frac{5}{2}}}{{\left (d x^{2} + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(5/2)/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^(5/2)/(d*x^2 + c)^(3/2), x)